An extended class of minimax generalized Bayes estimators of regression coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An extended class of minimax generalized Bayes estimators of regression coefficients

We derive minimax generalized Bayes estimators of regression coefficients in the general linear model with spherically symmetric errors under invariant quadratic loss for the case of unknown scale. The class of estimators generalizes the class considered in Maruyama and Strawderman (2005) to include non-monotone shrinkage functions. AMS subject classification: Primary 62C20, secondary 62J07

متن کامل

A new class of generalized Bayes minimax ridge regression estimators

Let y = Aβ + ε, where y is an N × 1 vector of observations, β is a p× 1 vector of unknown regression coefficients, A is an N × p design matrix and ε is a spherically symmetric error term with unknown scale parameter σ. We consider estimation of β under general quadratic loss functions, and, in particular, extend the work of Strawderman [J. Amer. Statist. Assoc. 73 (1978) 623–627] and Casella [A...

متن کامل

Bayes’ estimators of generalized entropies

The order-q Tsallis (Hq ) and Rényi entropy (Kq ) receive broad applications in the statistical analysis of complex phenomena. A generic problem arises, however, when these entropies need to be estimated from observed data. The finite size of data sets can lead to serious systematic and statistical errors in numerical estimates. In this paper, we focus upon the problem of estimating generalized...

متن کامل

Local convergence of variational Bayes estimators for mixing coefficients

In this paper we prove theoretically that for mixture models involving known component densities the variational Bayes estimator converges locally to the maximum likelihood estimator at the rate of O(1/n) in the large sample limit.

متن کامل

Consistency of Bayes Estimators of a Binary Regression Function

When do nonparametric Bayesian procedures “overfit?” To shed light on this question, we consider a binary-regression problem in detail and establish frequentist consistency for a large class of Bayes procedures based on certain heirarchical priors, called uniform mixture priors. These are defined as follows: let ν be any probability distribution on the nonnegative integers. To sample a function...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2009

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2009.06.001